Modeluji poruchový povrch (který považuji za rovinný obdélník). Získal jsem plochu povrchu, ale orientace není známa, což lze zjistit, pokud je znám poměr stran obdélníku. Existuje způsob, jak to zjistit pomocí průměrné míry skluzu?
Modeluji poruchový povrch (který považuji za rovinný obdélník). Získal jsem plochu povrchu, ale orientace není známa, což lze zjistit, pokud je znám poměr stran obdélníku. Existuje způsob, jak to zjistit pomocí průměrné míry skluzu?
Dobře, takže toto je poněkud komplikovaná otázka, a i když to není úplná odpověď, myslím, že vám mohu pomoci najít správný směr.
Vypadá to, že děláte úplně teoretickou studii, takže v tomto případě bych vám doporučil podívat se na Fault Maximum Displacement vs Fault Length Ratios (běžně označované jako D / L v komunitě technické). Zde je starší, ale dobrá studie o poměrech D / L: ftp://ftp.gps.caltech.edu/pub/avouac/OwensValley/Dawers-Geology-1993.pdf
Budete muset vytvořit určité předpoklady založené na typu poruchy, ke které dochází ve vašem modelu.
Našel jsem observační studii o poměrech D / L a rychlosti skluzu: http://www.sciencedirect.com/science/article/pii/S0191814101000360
Což se zdá být dobře citovaným článkem na toto téma. Zdá se, že existuje určitá korelace, ale možná se liší v závislosti na oblasti. Vím, že Mars, Země a Ledové měsíce kolem Jupiteru / Saturnu mají různé průměrné poměry D / L, které přímo korelují s rychlostmi deformace a vlastnostmi materiálu. Rychlost skluzu by měla mít podobnou, ne-li identickou korelaci (i když skluz se obvykle počítá na povrchu, kde je namáhání často podpovrchové).
Jaký software používáte k modelování této povrchové chyby? Je to homebrew nebo je to komunitní kód? Uvědomuji si, že při zveřejňování na internetu možná budete muset být trochu utajení ohledně toho, co zkoumáte, ale trochu více informací může nebo nemusí přispět k lepší odpovědi lidí.
Doufejme, že to pomohlo.